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17 Finite crystal lattice and its Fourier transform.
Lattice amplitude and shape amplitude

A finite lattice f (~x) — a regularly distributed motif fU (~x) (unit cell) over a finite region V of the
N–dimensional space — can be mathematically described in two formally different ways:

f (~x) = fU (~x) ∗
∑
~n∈V

δ (~x− ~x~n) , (1a)

f (~x) = fU (~x) ∗
∑

~n∈inf

δ (~x− ~x~n) s (~x) . (1b)

The expression (1a) seems to be more natural because the sum has a finite number of terms (the symbol
~n ∈ V means that the sum involves the terms in which the ending point of the lattice vector ~x~n 16(2)
lies in the region V ). On the other hand, in expression (1b) the sum has infinite number of terms (the
summation goes over all values of the multiindex ~n) and the finite region V is demarcated by the so–called
shape function s(~x) (characteristic function of the region V ):

s(~x) = 1, if ~x ∈ V ,

s(~x) = 0, if ~x 6∈ V .
(2)

If the finite lattice is formed entirely by complete unit cells, the expression (1b) does not depend on the
order in which the convolution and multiplication are performed and the expressions (1a) and (1b) are
equivalent.
The Fourier transforms of the two expressions (1) are, of course, also equivalent. They are, however,

expressed by different functions.
The Fourier transform of expression (1a) is — according to 7.3(1) and 1.3(2) — the product

F ( ~X) = FU ( ~X)G( ~X), (3)

in which the function

G( ~X) =
∑
~n∈V

exp
(
−ik ~X · ~x~n

)
(4)

is the sum of finite number of phasors. M. v. Laue [1] named the sum G( ~X) the lattice amplitude. It is
evidently a periodic function with the 2πk –multiple periodicity of the reciprocal lattice periodicity and

as ~X~h · ~x~n is an integer, it is

max
∣∣∣G( ~X)∣∣∣ = G

(
2π
k

~X~h

)
=

V

VU
. (5)

The ratio V
VU
is the number of unit cells forming the finite lattice.

The Fourier transform of expression (1b) has — by the use of 7.3(1), 7.3(3), and 4.3(17) — the form

F ( ~X) =
1

ANVU
FU ( ~X)

∑
~h∈ inf

δ

(
~X − 2π

k
~X~h

)
∗ S( ~X), (6)

where

S( ~X) = FT {s (~x)} = AN

∫
. . .

∫
V

exp
(
−ik ~X · ~x

)
dN~x. (7)

The function S( ~X) was named the shape amplitude by P. Ewald [2]. The same name is also used
for quantities proportional to the Fourier transform of the shape function, namely for dimensionless
quantities
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S1( ~X) =
1

ANV
S( ~X) and G1( ~X) =

1
ANVU

S( ~X). (8)

It is evident that the absolute values of these quantities assume their maximum value at ~X = ~0:

S(~0) = ANV, S1(~0) = 1, G1(~0) =
V

VU
. (9)

With the use of the shape amplitude G1 the Fourier transform (6) of a finite lattice may be rewritten
into the form

F ( ~X) = FU ( ~X)
∑

~h∈inf

δ

(
~X − 2π

k
~X~h

)
∗G1( ~X), (10)

which has exactly the same structure as expression (1b) characterizing the finite lattice. Therefore, the
Fourier transform of finite lattice is formed by shape amplitudes G1( ~X) situated at points 2πk

~X~h of the

reciprocal lattice and multiplied by the Fourier transform FU ( ~X) of the unit cell. This analogy between
the finite lattice and its Fourier transform may even be more evident from expressions that are obtained
from (1b) and (10) by carrying out the first the multiplication and then the convolution:

f(~x) =
∑

~n∈inf

s (~x~n) fU (~x− ~x~n) , (11)

F ( ~X) =
∑

~h∈inf

FU

(
2π
k

~X~h

)
G1

(
~X − 2π

k
~X~h

)
. (12)

Figure 1: The Fraunhofer diffraction from the sector star with two–fold symmetry. The star is shown in
the left lower corner of the figure. The arms of the diffraction pattern are perpendicular to the straight–
line parts of the boundary of the star. The two–fold sector star serves as the motif by the repetition of
which the lattices in Figure 2 arisen.

In other words and formally viewed, the Fourier transform of a finite lattice is again a finite lattice
with shape amplitudes G1 in the role of unit cells and with the Fourier transfrom FU of the unit cell
in the role of the shape function s limiting the region of the finite lattice in the space of the Fourier
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transform (cf. Figures 2, 3 and 4). We may recognize in it the feature of reciprocity: What is large in
the space of the variable ~x is small in the Fourier space of the variable ~X and vice versa. In reality
the analogy between the finite lattice and its Fourier transform in not so perfect as in symbols. The
reason is that the finite lattice is spatially limited by the shape function s(~x) which takes its zero value
abruptly (cf. (2)), whereas the Fourier transform of the finite lattice is a finite lattice only in the sense
that is limited by the Fourier transform FU ( ~X) of the unit cell, which goes to zero only asymptotically
as X →∞.
As we have seen the Fourier transform of a finite lattice can be expressed in two formally different

ways: On the one hand by expression (3) in terms of the lattice amplitude (4), and on the other hand
by expression (10) and (12), respectively, in terms of the shape amplitude (8). One may think that it
is always advantageous to use expression (3) which is the product of two simple functions rather than
expression (10) or (12) which represent the N–multiple infinite series. There are, however, at least three
reasons to make it cleare that just the opposite is usually true:
(i) Usually it is not at all easy to calculate the lattice amplitude G( ~X) according to its definition (4).

If the boundaries of the lattice are complicated it is quite difficult to specify the limits of the sum (4).
Therefore, the relation obtained by comparing (3) and (10) may be useful:

G( ~X) =
∑

~h∈inf

G1( ~X) ∗ δ

(
~X − 2π

k
~X~h

)
=

∑
~h∈inf

G1

(
~X − 2π

k
~X~h

)
. (13)

It expresses the lattice amplitude G( ~X) (a periodic function) by superposition of shape amplitudes
G1( ~X) (non–periodic functions).
(ii) If the finite lattice is formed by a large number of unit cells in any direction the modulus of the

shape amplitude
∣∣G1( ~X)∣∣ has a sharp maximum at the origin, i.e. the function G1( ~X)

VU

V = S1( ~X) is
essentially different from zero only in the vicinity of the origin. Consequently, in the vicinity of the points
~X = 2π

k
~X~h it holds that

G( ~X)
.
= G1

(
~X − 2π

k
~X~h

)
, if

∣∣∣∣ ~X − 2π
k

~X~h

∣∣∣∣ � 2π|k| ∣∣~a+r ∣∣ , (14)

because the contributions of all other terms of the series (13) are negligible. Hence, the shape amplitude
G1

(
~X − 2π

k
~X~h

)
may be used as a local approximation of the lattice amplitude G( ~X) within the vicinity

of points ~X = 2π
k

~X~h. This was, in fact, the initial motivation for the study of the shape amplitude when
M. v. Laue [3] approximated the sum (4) by the integral expressing the shape amplitude G1.
Good local approximation of the lattice amplitude G by the shape amplitude G1 in the vicinity of

the points 2πk
~X~h may be illustrated by the one dimensional lattice formed by (2n + 1) points: f(x) =∑n

j=−n δ(x− ja). The lattice amplitude of such a lattice is

G(X) =
n∑

j=−n

exp
(
−ikXja

)
=
sin

[
kX(2n+ 1)a/2

]
sin

(
kXa/2

) (15)

and the shape amplitude

G1(X) =
∫ (2n+1)a/2

−(2n+1)a/2
exp

(
−ikXa

)
dx =

sin
[
kX(2n+ 1)a/2

]
kXa/2

. (16)

Efficient local approximation of the lattice amplitude (15) by the shape amplitude (16) in the vicinity of
the lattice point X = 0 is obvious from the algebraic expressions of the two functions. Figure 5 illustrates
it for the case of the lattice formed by nine points.
(iii) The finite lattice always has the shape of an N–dimensional polyhedron (a polygon in E2, a

polyheron in E3). The shape amplitudes of polyhedra can easily be calculated because the integral (7)
can always be evaluated analytically, as mentioned in Section 11.1. In the three–dimensional case this was
pointed out by M. v. Laue [3] who recommended to use the Abbe transform for calculation of the integral
(7) (cf. [5] and Appendix D of these lectures). In 1939 Patterson [4] calculated the shape amplitudes of
several palyhedra in such a way that he decomposed the polyhedron into tetrahedra, calculated the shape
amplitude of a general tetrahedron and expressed the shape amplitude of the polyhedron by summing
up the shape amplitudes of the constituent tetrahedra. Algebraic formulae of the shape amplitudes of
general polygons and polyhedra derived by the use of the Abbe transform 11.1(2) have been published
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Figure 2: Two–dimensional square lattices in the left–hand column resulted from translations of sector
stars with different orientation. The Fraunhofer diffraction pattern in the right–hand column illustrate
that the diffraction pattern from the lattice is restricted by the diffraction from the motif. (Note that the
arms of the diffraction patterns are perpendicular to the straight–line boundaries of the sector stars.)
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Figure 3: Influence of the external shape of the finite lattice on the shape of diffraction spots [5]. (a),(b) —
two–dimensional lattices of the same structure (squared) but with different external boundaries. (c),(e)
and (d),(f) — the Fraunhofer diffraction patterns from (a) and (b). (c),(d) — the whole central region of
the patterns, (e),(f) — a detail showing the shape of the diffraction spots (squared modulus of the lattice
amplitude G( ~X)). The subsidery maxima in the centre of the reciprocal lattice cells, clearly visible in
(f), disappear with the increasing number of scattering centres. (Their intensity is proportional to the
number of the scattering centres, whereas the intensity of the principal maxima is proportional to the
square of the number of scattering centres.)



6 17 FINITE CRYSTAL LATTICE. LATTICE AMPLITUDE AND SHAPE AMPLITUDE

Figure 4: The Fraunhofer diffraction pattern from a finite two–dimensional lattice. The two lattices
shown in the upper part of the figure have the same structure and the same habit but they differ in
motif: The apertures are circular (left) or rectangular (right). The middle part of the figure shows the
whole Fraunhofer diffraction patterns from the lattices. It is evident that the diffraction pattern as
a whole is marked off by the diffraction from the motif (the Airy pattern with rotational symmetry
corresponds to diffraction from the circular aperture, the cross with arms perpendicular to the sides
corresponds to diffraction from the rectangular aperture). The lower part of the figure shows enlarged
central regions of the diffraction patterns. They are almost identical because the structure of the two
lattices is the same. The principal maxima form reciprocal lattice of the diffraction lattice.
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Figure 5: The lattice amplitude G(X) =
sin

(
9kXa/2

)
sin

(
kXa/2

) and the shape amplitude G1(X) =
sin

(
9kXa/2

)
kXa/2 of

the one–dimensional lattice formed by nine points. It is obvious from the graphs that the shape amplitude
G1(X) well approximates the lattice amplitude G(X) in the vicinity of the lattice point X = 0, i.e. if
|X| � 2π

ka .

in 1988 [5]. By means of them the shape amplitudes of polygons and polyhedra can easily be calculated
(cf. Section 13.2, Appendix D and papers [6], [7]). Therefore it is advantageous to calculate the Fourier
transform of finite lattice according to (12). In doing so the infinite series (12) may be replaced in the
vicinity of points ~X = 2π

k
~X~h by several its terms only, often — in fact almost always — by only the one,

as indicated by (14) and illustrated in Figure 5.
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